

System Identification of Nonlinear State-Space Battery Model
December 2012 Progress Report

Author:
Wei He
weihe@calce.umd.edu
Center for Advanced Life Cycle Engineering
Department of Mechanical Engineering
University of Maryland, College Park

Advisor:
Dr. Chaochao Chen
chaochao@umd.edu
Center for Advanced Life Cycle Engineering
Department of Mechanical Engineering
University of Maryland, College Park

Abstract
The goal of this project is to solve the parameter estimation problem of the nonlinear state-space model for the battery state of charge estimation. An Expectation Maximization (EM) algorithm is employed to solve this problem. The Expectation (E) step involves solving a nonlinear state problem, which will be solved using the particle filter and smoother algorithm in this project. In this semester, the particle filter and smoother were implemented and validated in Matlab.
1. Introduction
Electric vehicles (EVs) powered by lithium-ion batteries is going to penetrate the automobile market within the next few years, due to the increasing concerns on global warming and fossil fuel depletion. However, challenges still exist for EVs that remain to be solved. The most notable one is the state of charge (SOC) estimation, which can be used for remaining range prediction of EVs and optimal battery control. SOC by definition is the remaining charge in the battery expressed as the percentage of its maximum capacity. When the battery is full, the SOC is 100%; when it is empty, the SOC is 0 %. To estimate the SOC, a lot of equivalent circuit models (ECMs) have been developed to model the dynamics of the battery system [1-3]. Fig.1 shows a commonly used ECM [1]. In this figure Vt is the terminal voltage of the battery that can be measured by a voltage sensor. OCV is the open circuit voltage of a battery, which is a monotonic nonlinear function of SOC. The nonlinear relationship between OCV and SOC can be established by battery tests. The Rp and Cp are the double layer resistance and capacitance respectively, and R0 is the series resistance of the battery. It should be noted that the ECM in Fig.1 is just an approximation of the real system. If more capacitors and resistors are added into the model, the modeling accuracy may be increased. Eq. (1) shows the equations of the ECM in Fig. 1 in a continuous form.
[image:]
Figure 1 An equivalent circuit model of batteries

 (1)
We can reformulate the Eq.(1) to a discrete state-space representation as follows:

 (2)

 (3)

where k is the sampling time and is the sampling interval.
To model the dynamic evolution of the hidden state SOCk, the Coulomb counting principle can be used, which is defined by:

 (4)
where Qmax is the maximum capacity of a battery, and IL is the current flowing through the battery.
The combination of Eq.(2), Eq.(3) and Eq.(4) forms a state-space model for the battery SOC estimation. Since SOC and Vp are not direct observable, they are set as the state variables. As a result, Eq.(2) and Eq.(4) are the process functions in the model. Vt can be directly measured by a sensor, so Eq.(3) is the measurement function. The input of the model is IL,k and output is VL,k. We assume that the states: SOC and Vp, and the output Vt are corrupted with independent zero mean Gaussian noise. The state-space representation of the battery system is summarized as follows:

 (5)

Therefore, the model parameters of this model are . The model parameters will change with the loading conditions of batteries. For example, R0 may decrease with the increase of temperature. Thus, we need to update these parameters to reflect the true system response, in order to get accurate SOC estimations.

2. Approach
2.1 Expectation Maximization

This project considers estimating the unknown parametersin state-space models

 (6)
based on the information in the measured input-output responses

 (7)
using a maximum likelihood (ML) framework

 (8)
Eq. (8) is equivalent to maximize a log-likelihood function of Y1:N

 (9)

where is:

 (10)

Given a set of observed data, a set of unobserved latent data or missing values, and a vector of unknown parameters, the EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps [4]:
1.

Expectation step (E step): calculate the expected value of the log likelihood function, with respect to the conditional distribution of given under the current estimate of the parameters :

 (11)

 (12)
2. Maximization step (M step): find the parameter that maximizes this quantity:

 (13)
If not converged, update ii+1 and return to step 2

It has been proved in Ref.[4] that , which implies that the increase of can insure the increase of the log likelihood of

When the model (6) is linear and the process noise and measure noise and are Gaussian, then Eq. (11) can be simply computed by a standard Kalman filter. However, in nonlinear and/or non-Gaussian case, other approaches should be employed. In this study the particle filter and smoother will be used to compute Eq. (11). Apply the conditional expectation operator to both side of Eq. (12), we have [4]:

 (14)
where

 (15)

 (16)

 (17)

[bookmark: OLE_LINK1][bookmark: OLE_LINK2] in Eq. (15) and in Eq. (17) are smoothing problems and can be solved using a particle smoother [4-6]. In Eq. (16), can be rewritten as

 (18)
Therefore, the particle filter and smoother representations can be used deliver an importance sampling approximation to I2 .

If we substitute the particle smoother representation: and particle filter representation: into Eq. (15) , Eq. (16) and Eq. (17), then we have:

 (19)

Eq. (19) provides a solution to calculate for any nonlinear state space model. The EM method with particle approximation is called particle EM in the literature. Below provides a summary of the particle EM algorithm [4].

 (
Set

i
 = 0 and initialize
Expectation (E) Step:
Run particle filter and particle smoother
Calculate
Maximization (M) Step:
Compute:

Check the non-termination
condition
. If satisfied update
and return to step 2, otherwise terminate.
)

2.2 The algorithm of particle filter
This section will introduce the principles of particle filters, which follows a Bayesian filtering framework. It includes two steps: prediction and update. Prediction is to propagate the distribution to the next time point based on the process model to get a prior for the updating step:

 (20)
In the updating step, the posterior distribution is updated with the measurement using Bayes’ rule:

 (21)

where
Eq. (20) and (21) forms a recursive Baysian solution for the filtering problem. But it is just conceptual in general, because the propagation of the distributions is hard to solve analytically in most case. However it is possible to find an approximated numerical solution by using Monte Carlo sampling. The idea is to represent the distribution by a set of random samples with the associated weights:

 (22)

[bookmark: OLE_LINK11][bookmark: OLE_LINK12]where , i = 1,2,3,…,M is a set of independent random samples draw from a proposal distribution , and is the Bayesian importance weights associated with each sample . The weight can be obtained by:

 (23)

[bookmark: OLE_LINK13][bookmark: OLE_LINK14]Why sampling from instead of is because the target distribution is usually unknown. If we choose our proposal distribution to be, then the weights become to

 (24)

Since the denominator is independent of , we have:

 (25)
The main steps of the particle filter are summarized as follows [4]:

1.
Initialize particles, and set k = 1.
2.
Predict the particles by drawing M i.i.d samples according to

3.
Compute the importance weights

4.

For each j = 1,…,M draw a new particle with replacement (resample) according to
5. If k < N increment k k+1 and return to step 2, otherwise terminate.
--

In step 4 of the algorithm, there is a resample step. This resample step is to solve the degeneracy problem of particle filters. Degeneracy problem means that after several iterations, the weights of the most particles are close to zero, which implies that a large computational effort is devoted to updating particles whose contribution to is almost zero. The basic idea of resample is to eliminate the particles with small weights and concentrate on the particles with high weights. In this study, we adopted the system resampling algorithm presented in Ref. [5], and the steps of the algorithm are shown below:
--
 Initialize the CDF: c1 = 0
For i = 2:M

Construct CDF:
End For
Start at the bottom of the CDF: i = 1

Draw a starting point:
For j=1:M

Move along the CDF:

While
i = i+1
End while
Record indices: indj = i
End For

In this algorithm, the indices of the particles after resampling are recorded, and these particles kept after resampling are used as the parent particles for the state prediction in the next time points.

2.3 Particle smoother

Similar to particle filter, the particle smoother is to approximate the distribution of the posterior distribution of xk given the entire measurements Y1:N by a set of particles , i = 1,2,3,…,M with associated weights :

 (26)

To compute the , we note the following fact based on the law of total probability and Bayes’ rule:

 (27)

It is easy to find that when k = N, the smoothing density and the filtering density are the same, and hence the weights in Eq. (26) and the particles are identical. As a result, we can work backwards to compute Eq. (27) by assuming the particle smoothing approximation is available at time k+1 and use it to compute Eq.(27) as:

 (28)
Therefore, based on Eq. (27) and Eq. (28) , we have

The steps of the particle smoother are listed as follows [4]:
--
1.

Run the particle filter and store the predicted particles and their weights , for k = 1,…,N.
2.

Initialize the smoothed weights to be the terminal filtered weights at time k = N: and set k = N-1.
3.

Compute the smoothed weights using the filtered weights and particles via:

4. Update k k-1. If k > 0 return to step 3, otherwise terminate.

3. Validation
3.1 Simulated signal generation
In this project, the particle filter and smoother will be validated using simulated data. Here, we assume that the model parameters in Eq. (5) are known, and simulated data were generated based on Eq. (5). The parameter settings are shown as follows:

Fig. 2 shows the voltage and current signal and Fig. 3 shows the evolution of the states.

[image:]
Fig.2 Simulated input current and output voltage
[image:]
Fig. 3 Simulated SOC and Vp

3.2 Particle Filtering and Smoothing Results

[bookmark: OLE_LINK4][bookmark: OLE_LINK5]The particle filter and particle smoother were implemented to estimate the states and compared with the real states to evaluate the algorithm performance and correctness of the implementation. Fig.4 and Fig. 5 shows the particle filtering and smoothing results respectively. The red line is the real state and the blue line is the estimation. It can be seen from the figures that the particle filter and smoother can provide accurate state estimations. The root mean square (RMS) error of particle filter is 0.0063 and that of particle smoother is 0.0050. For comparison, the Kalman filter was also implemented. Fig. 6 shows the Kalman filtering result. Since we assume the OCV(SOC) here is a linear function, the Kalman filter provides a optimal solution here, and RMS error is only 0.0045, which outperforms particle filter. Based on the principle of particle filter, the accuracy of the particle filter will be increased if we use more particles to approximate the distribution. Fig. 7 shows the RMS error as a function of the particle number. It can be seen that as the particle number increases, the RMS error is approaching 0.0045. In the next step, the OCV(SOC) will be changed to a nonlinear function, then it can be expected that the particle filter will outperform the Kalman filter.
[image:]
Fig. 4 Particle filter-based SOC estimation
[image:]
Fig.5 Particle smoothing-based SOC estimation
[image:]
Fig. 6 Kalman filter-based SOC estimation

Fig. 7 The RMS estimation error of the SOC as a function of particle filter size

4 Future works and Deliverables
The future works are to implement the full expectation maximization algorithm based on the particle smoother and validate the full algorithm. The timeline is listed as follows:
· for the full algorithm: February 1
· Validation: March 15
· Testing: April 15
· Final Report: May 1
The algorithm is being written in Matlab 2010 using a Dell laptop. Once the project finished, Deliverables include the codes of the particle filter, particle smoother and particle EM. The datasets of the simulated battery discharge process, and the end-of-the year progress reports.

5 References
1. H. He, R. Xiong, and H. Guo, Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles. Applied Energy, 2012. 89(1): p. 413-420.
2. C. Hu, B.D. Youn, and J. Chung, A Multiscale Framework with Extended Kalman Filter for Lithium-Ion Battery SOC and Capacity Estimation. Applied Energy, 2012. 92: p. 694-704.
3. H.W. He, R. Xiong, and J.X. Fan, Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies, 2011. 4(4): p. 582-598.
4. T.B. Schön, A. Wills, and B. Ninness, System identification of nonlinear state-space models. Automatica, 2011. 47(1): p. 39-49.
5. M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. Signal Processing, IEEE Transactions on, 2002. 50(2): p. 174-188.
6. A. Doucet and A.M. Johansen, A tutorial on particle filtering and smoothing: fifteen years later. Handbook of Nonlinear Filtering, 2009: p. 656-704.

系列 1	50	100	200	400	800	1600	6.3000000000000052E-3	5.4000000000000064E-3	4.9000000000000059E-3	4.7000000000000045E-3	4.5000000000000023E-3	4.5000000000000023E-3	Number of Particles
RMS Estimation Error of SOC
oleObject1.bin

image47.wmf
11:11:1:11:

(|)(|,)(|)(|)(|)

kkkkkkkkkkkkk

pxYpxxYpxYdxpxxpxYdx

+++

==

òò

oleObject47.bin

image48.wmf
11:1111:

111:11:

11:

1111:

11:

(|)(|,)

(|,)(|)

(|)

(|)(|)

(|)

kkkkk

kkkkk

kk

kkkk

kk

pxYpxYY

pYxYpxY

pYY

pYxpxY

pYY

++++

+++

+

+++

+

=

=

=

oleObject48.bin

image49.wmf
11:1111:1

(|)(|)(|)

kkkkkkk

pYYpYxpxYdx

+++++

=

ò

oleObject49.bin

image50.wmf
1:

1

(|)()

M

ii

kkkkk

i

pxYwxx

d

=

»-

å

oleObject50.bin

image51.wmf
i

k

x

oleObject51.bin

image3.wmf
,1,,

exp1exp

pkpkpLk

pppp

TT

VVRI

CRCR

+

éù

æöæö

DD

=-+--

êú

ç÷ç÷

ç÷ç÷

êú

èøèø

ëû

image52.wmf
i

k

w

oleObject52.bin

oleObject53.bin

image53.wmf
(

)

1:

1:

(|)

|

i

i

kk

k

i

kk

pxY

w

xY

p

=

oleObject54.bin

oleObject55.bin

image54.wmf
(

)

1:

|

i

kk

xY

p

oleObject56.bin

image55.wmf
1:

(|)

i

kk

pxY

oleObject57.bin

oleObject2.bin

image56.wmf
1:

(|)

i

kk

pxY

oleObject58.bin

oleObject59.bin

image57.wmf
1

(|)

kk

pxx

-

oleObject60.bin

image58.wmf
1:

11:1

(|)(|)

(|)(|)

ii

i

kkkk

k

kkkk

pxYpyx

w

pxxpyY

--

==

oleObject61.bin

oleObject62.bin

image59.wmf
1

1

(|),(|)

M

iii

kkkkk

i

wpyxpyx

k

k

=

==

å

oleObject63.bin

image4.wmf
,0,,

()

tkkLkpk

VOCVSOCRIV

=--

image60.wmf
010

{}~()

iM

i

xPx

q

=

oleObject64.bin

image61.wmf
(

)

1

~|,1,...,

ii

kkk

xPxxiM

q

-

=

%%%

oleObject65.bin

image62.wmf
{

}

1

M

i

k

i

w

=

oleObject66.bin

image63.wmf
%

(

)

%

(

)

%

(

)

1

|

,1,...,

|

i

k

k

i

i

k

k

M

j

k

k

j

Pyx

wwxiM

Pyx

q

q

=

===

å

oleObject67.bin

image64.wmf
i

k

x

%

oleObject68.bin

oleObject3.bin

image65.wmf
%

(),1,...,

j

ji

k

kk

PxxwiM

===

oleObject69.bin

oleObject70.bin

image66.wmf
1

i

iik

ccw

-

=+

oleObject71.bin

oleObject72.bin

image67.wmf
1

1

(1)

js

uuNj

-

=+-

oleObject73.bin

image68.wmf
ji

uc

>

oleObject74.bin

image5.wmf
T

D

oleObject75.bin

image69.wmf
1:|

1

(|)()

M

ii

kNkNkk

i

pxYwxx

d

=

»-

å

oleObject76.bin

image70.wmf
|

i

kN

w

oleObject77.bin

image71.wmf
1:1,1:11:1

1,11:1

1

11:1

1

1

11:1

1

(|)(|)(|)

(|)(|)

(|)(|)

(|)

(|)

(|)

(|)(|)

(|)

kNkkNkNk

kkkkNk

kkkk

kNk

kk

kk

kkkNk

kk

pxYpxxYpxYdx

pxxYpxYdx

pxxpxY

pxYdx

pxY

pxx

pxYpxYdx

pxY

+++

+++

+

++

+

+

++

+

=

=

=

=

ò

ò

ò

ò

oleObject78.bin

image72.wmf
|

ii

NNN

ww

=

oleObject79.bin

image73.wmf
i

N

x

oleObject4.bin

oleObject80.bin

image74.wmf
(

)

(

)

1|1

1

11:1

1

11:

1

1

|

(|)

(|)

(|)

|

jjj

M

kNkk

kk

kNk

M

iii

j

kk

kkk

i

wpxx

pxx

pxYdx

pxY

wpxx

++

+

++

=

+

+

=

»

å

ò

å

oleObject81.bin

image75.wmf
(

)

(

)

1:|

1

1|1

|

1

1

1

(|)()

|

|

M

ii

kNkNkk

i

jji

M

kNkk

ii

kNk

M

iji

j

kkk

i

pxYwxx

wpxx

ww

wpxx

d

=

++

=

+

=

»-

=

å

å

å

oleObject82.bin

image76.wmf
1

{}

iM

ki

x

=

oleObject83.bin

image77.wmf
1

{}

iM

ki

w

=

oleObject84.bin

image78.wmf
{

}

i

k

w

image6.wmf
,

1

max

Lk

kk

IT

SOCSOC

Q

+

D

=-

oleObject85.bin

image79.wmf
|

,1,...,

ii

NNN

wwiM

==

oleObject86.bin

image80.wmf
{

}

|

1

M

i

kN

i

w

=

oleObject87.bin

image81.wmf
{

}

1

M

i

k

i

w

=

oleObject88.bin

image82.wmf
%

%

1

1

{,}

ii

M

kk

i

xx

+

=

oleObject89.bin

image83.wmf
%

%

%

%

1

1

|1|

11

(|)

where(|)

ji

MM

ji

kk

iijji

kk

kNkkNkk

j

ji

k

Pxx

wwwvwPxx

v

q

q

+

+

+

==

==

åå

oleObject5.bin

oleObject90.bin

image84.wmf
max0

663

1.070.10.110

101010()1.62

p

pp

SOCVQ

QAhRRCF

OCVSOCSOC

sss

==W=W=

====+

oleObject91.bin

image85.emf
0 1000 2000 3000 4000 5000 6000 7000 8000

-4

-2

0

2

4

Time(s)

Current (A)

Current and Voltage Measurements

0 1000 2000 3000 4000 5000 6000 7000 8000

1

2

3

4

Time(s)

Vt (V)

image86.emf
0 1000 2000 3000 4000 5000 6000 7000 8000

0

0.5

1

Time(s)

SOC

Hidden States: SOC and Vp

0 1000 2000 3000 4000 5000 6000 7000 8000

-0.2

0

0.2

0.4

0.6

Time(s)

Vp

image87.emf
0 1000 2000 3000 4000 5000 6000 7000 8000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (S)

SOC

SOC

Estimated SOC

image88.emf
0 1000 2000 3000 4000 5000 6000 7000 8000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (S)

SOC

SOC

Estimated SOC

image89.emf
0 1000 2000 3000 4000 5000 6000 7000 8000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (S)

SOC

SOC

Estimated SOC

image7.wmf
max

1,

,

,1,,

,0,,

Processfunction:

/

10

0exp1exp

Meausrementfunction:

()

kkSOCk

Lk

pkpkVpk

p

pppp

tkkLkpk

tQ

SOCSOC

I

tt

VV

R

CRCR

VOCVSOCRIV

w

w

+

+

-D

éù

éù

êú

éùéùéù

êú

éù

æöæö

=++

DD

êú

êúêúêú

êú

êú

ç÷ç÷

ëûëûëû

êú

êú

ç÷ç÷

êú

êú

èøèø

ëûëû

ëû

=--+

(

)

(

)

(

)

where

~0,~0,~0,

SOCpV

p

k

SOCV

NNN

wwx

x

wswsxs

oleObject6.bin

image8.wmf
0max

,,,,,

socV

p

pp

RCRQ

wwx

qsss

éù

=

ëû

oleObject7.bin

image9.wmf
q

oleObject8.bin

image10.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

,,,

,,,

k

k

kkkkkk

kkkkkke

xfxup

yhxueep

u

ququq

qqq

+

=+×

=+×

:

:

oleObject9.bin

image11.wmf
1:,1,2,1:,1,2,

,,...,,,,...,

NtttNNtttN

UIIIYVVV

éùéù

==

ëûëû

oleObject10.bin

image12.wmf
(

)

1:

ˆ

argmax

N

pY

q

q

q

=

oleObject11.bin

image13.wmf
(

)

1:

ˆ

argmax

N

LY

q

q

q

=-

oleObject12.bin

image14.wmf
(

)

1:

N

LY

q

oleObject13.bin

image15.wmf
(

)

(

)

(

)

(

)

1:1:11:1

2

logloglog|

N

NNkk

k

LYpYpYpyY

qqqq

-

=

==+

å

oleObject14.bin

image16.wmf
1:

N

Y

oleObject15.bin

image17.wmf
1:

N

X

oleObject16.bin

oleObject17.bin

image18.wmf
1:

N

X

oleObject18.bin

image19.wmf
1:

N

Y

oleObject19.bin

image20.wmf
i

q

oleObject20.bin

image21.wmf
(

)

(

)

(

)

(

)

1:1:1:1:1:1:1:1:

,,|,|

ii

iNNNNNNNN

QELXYYLXYpXYdX

qqqq

qq

==

éù

ëû

ò

oleObject21.bin

image22.wmf
(

)

(

)

(

)

(

)

(

)

(

)

1:1:1:1:1:

1

11

11

,log|log

loglog|log|

NNNNN

NN

kkkk

kk

LXYpYXpX

pxpxxpyx

qqq

qqq

-

+

==

=+

=++

åå

oleObject22.bin

image23.wmf
(

)

1

argmax,

ii

Q

q

qqq

+

=

oleObject23.bin

image24.wmf
(

)

(

)

(

)

(

)

1

1:1:1

,,

ii

NNiiii

LYLYQQ

qq

qqqq

+

+

-³-

oleObject24.bin

image25.wmf
(

)

1

,

ii

Q

qq

+

oleObject25.bin

image26.wmf
(

)

1

1:

i

N

LY

q

+

oleObject26.bin

image27.wmf
t

u

oleObject27.bin

image28.wmf
t

e

oleObject28.bin

image29.wmf
{

}

1:

|

i

N

EY

q

×

oleObject29.bin

image30.wmf
(

)

123

,

i

QIII

qq

=++

oleObject30.bin

image31.wmf
(

)

(

)

1111:1

loglog|

ii

N

IpxpxYdx

qq

=

ò

oleObject31.bin

image32.wmf
(

)

(

)

1

2111

1

log|,|

i

N

kkkkNkk

k

IpxxpxxYdxdx

qq

-

+++

=

=

å

òò

oleObject32.bin

image33.wmf
(

)

(

)

31:

1

log||

i

N

kkkNk

k

IpyxpxYdx

qq

=

=

å

ò

oleObject33.bin

image34.wmf
(

)

11:

|

i

N

pxY

q

oleObject34.bin

image35.wmf
(

)

|

i

tN

pxY

q

oleObject35.bin

image36.wmf
(

)

11:

,|

i

kkN

pxxY

q

+

oleObject36.bin

image1.png

image37.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

11:11:11:

11:11:

11:

11:

11:

,||,|

|,|

||

|

|

iii

ii

ii

i

i

kkNkkNkN

kkkkN

kkkk

kN

kk

pxxYpxxYpxY

pxxYpxY

pxxpxY

pxY

pxY

qqq

qq

qq

q

q

+++

++

+

+

+

=

=

=

oleObject37.bin

image38.wmf
(

)

(

)

1:|

1

|

i

N

jj

kNkNkk

j

pxYxx

q

wd

=

=-

å

oleObject38.bin

image39.wmf
(

)

(

)

1:

1

|

i

N

jj

kkkkk

j

pxYxx

q

wd

=

=-

å

oleObject39.bin

image40.wmf
(

)

(

)

(

)

(

)

(

)

(

)

1111:1

1

2111:1

1

31:

1

loglog|

log|,|

log||

i

i

i

N

N

kkkkNkk

k

N

kkkNk

k

IpxpxYdx

IpxxpxxYdxdx

IpyxpxYdx

qq

qq

qq

-

+++

=

=

=

=

=

ò

å

òò

å

ò

oleObject40.bin

image41.wmf
(

)

,

i

Q

qq

oleObject41.bin

image2.wmf
(

)

0

p

L

p

ppp

tpL

V

I

V

CCR

VOCVSOCVIR

ì

=-

ï

í

ï

=--

î

&

image42.wmf
i

q

oleObject42.bin

image43.wmf
(

)

µ

µ

µ

123

,

Mi

QIII

qq

=++

oleObject43.bin

image44.wmf
¶

(

)

1

argmax,

iMi

Q

q

qqq

+

=

oleObject44.bin

image45.wmf
(

)

(

)

1

,,

iiii

QQ

qqqqe

+

->

oleObject45.bin

image46.wmf
1

ii

®+

oleObject46.bin

